WARNING!

Never spin a bearing with compressed air. The force of the compressed air may cause the rollers to be expelled with great velocity, creating a risk of serious bodily harm.

Proper bearing maintenance and handling practices are critical. Failure to follow installation instructions and failure to maintain proper lubrication can result in equipment failure, creating a risk of serious bodily harm.

If a hammer and mild steel bar are used for bearing removal, fragments from the hammer, bar or the bearing can be released with sufficient velocity to create a risk of serious bodily injury including damage to your eyes.

Inadequate lubrication*

- Roller end scoring — Metal-to-metal contact from breakdown of lubricant film.
- Cone large rib face scoring — "Welding" and heat damage from metal-to-metal contact.

Handling damage

- Roller spaced nicking — Raised metal on races from contact with roller edges.
- Roller nicking/denting — Rough handling or installation damage.
- Cup-face denting — Indentations from hardened driver.

Fatigue spalling

- Inclusion origin — Spalling from oxides or other hard inclusions in bearing steel.
- Geometric stress concentration — Spalling from misalignment, deflections or heavy loading.
- Point surface origin — Spalling from debris or raised metal exceeding the lubricant film thickness.

Excessive preload or overload

- Rapid and deep spalling caused by unusually high stresses. Full race width fatigue spalling is caused by heavy loads creating a thin lubricant film and possible elevated temperatures.

Excessive end play

- Scallopng — Uneven localized wear resulting from excessive end play.
- Cage pocket wear — Heavy contact between the rollers and cage pocket surfaces caused by bearing operating too loosely.

The most common types of bearing damage that may result in a reduction of bearing or application life are often caused by:

- insufficient maintenance practices
- mishandling
- improper installation and adjustment practices
- inadequate lubrication

The following offers a quick reference to the common causes of bearing damage.

Tapered Roller Bearing Damage Analysis

The Timken Company

Timken® is the registered trademark of The Timken Company

www.timken.com

©2003 The Timken Company

Printed in USA

1M 08-05-07 Order No. 6347
<table>
<thead>
<tr>
<th>Damage Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive wear</td>
<td>Fine abrasive particle contamination.</td>
</tr>
<tr>
<td>Bruising</td>
<td>Debris from other fatigued parts, inadequate sealing or poor maintenance.</td>
</tr>
<tr>
<td>Grooving</td>
<td>Large particle contamination imbedding into soft cage material.</td>
</tr>
<tr>
<td>Cage damage</td>
<td>Cage Deformation — Improperly installed or dropped bearing.</td>
</tr>
<tr>
<td></td>
<td>Rollers binding and skewing — Cage ring compressed during installation or interference during service.</td>
</tr>
<tr>
<td>Corrosion / etching</td>
<td>Etching — Rusting with pitting and corrosion from moisture/water exposure.</td>
</tr>
<tr>
<td></td>
<td>Staining — Surface stain with no significant corrosion from moisture exposure.</td>
</tr>
<tr>
<td>Cage damage</td>
<td>Line spalling — Roller-spaced spalling from bearings operating after etching damage.</td>
</tr>
<tr>
<td>Improper fit</td>
<td>Cone bore damage — Fractured cone due to out-of-round or oversized shaft.</td>
</tr>
<tr>
<td>Electric current</td>
<td>Electric arc pitting — Small burns created by arcs from improper electric grounding while the bearing is stationary.</td>
</tr>
<tr>
<td>Peeling</td>
<td>Micro-spalling due to thin lubricant film from high loads/low RPM or elevated temperatures.</td>
</tr>
<tr>
<td>False brinelling</td>
<td>Wear caused by vibration or relative axial movement between rollers and races.</td>
</tr>
<tr>
<td>True brinelling</td>
<td>Damage from shock or impact.</td>
</tr>
</tbody>
</table>
Foreign material
- Abrasive wear — Fine abrasive particle contamination.
- Bruising — Debris from other fatigued parts, inadequate sealing or poor maintenance.
- Grooving — Large particle contamination imbedding into soft cage material.

Cage damage
- Cage Deformation — Improperly installed or dropped bearing.
- Rollers binding and skewing — Cage ring compressed during installation or interference during service.

High spots in cup seats
- Localized spalling on the cup race from stress rizer created by split housing pinch point.

Corrosion / etching
- Etching — Rusting with pitting and corrosion from moisture/water exposure.
- Staining — Surface stain with no significant corrosion from moisture exposure.
- Line spalling — Roller-spaced spalling from bearings operating after etching damage.

Improper fit
- Cone bore damage — Fractured cone due to out-of-round or oversized shaft.
- Cup spinning — Loose cup fit in a rotating wheel hub.

Electric current
- Electric arc pitting — Small burns created by arcs from improper electric grounding while the bearing is stationary.
- Electric current — Rusting with pitting and corrosion from moisture/water exposure.
- Staining — Surface stain with no significant corrosion from moisture exposure.

Peeling
- Micro-spalling due to thin lubricant film from high loads/low RPM or elevated temperatures.

False brinelling
- Wear caused by vibration or relative axial movement between rollers and races.

True brinelling
- Damage from shock or impact.
Tapered Roller Bearing Damage Analysis

The most common types of bearing damage that may result in a reduction of bearing or application life are often caused by:

- insufficient maintenance practices
- mishandling
- improper installation and adjustment practices
- inadequate lubrication

The following offers a quick reference to the common causes of bearing damage.

WARNING!

Never spin a bearing with compressed air. The force of the compressed air may cause the rollers to be expelled with great velocity, creating a risk of serious bodily harm.

Proper bearing maintenance and handling practices are critical. Failure to follow installation instructions and failure to maintain proper lubrication can result in equipment failure, creating a risk of serious bodily harm.

If a hammer and mild steel bar are used for bearing removal, fragments from the hammer, bar or the bearing can be released with sufficient velocity to create a risk of serious bodily injury including damage to your eyes.

Handling damage

- Roller spaced nicking — Raised metal on races from contact with roller edges.
- Roller nicking/denting — Rough handling or installation damage.
- Cup-face denting — Indentations from hardened driver.

Excessive preload or overload

- Rapid and deep spalling caused by unusually high stresses. Full race width fatigue spalling is caused by heavy loads creating a thin lubricant film and possible elevated temperatures.

Excessive end play

- Scalloping — Uneven localized wear resulting from excessive end play.
- Cage pocket wear — Heavy contact between the rollers and cage pocket surfaces caused by bearing operating too loosely.

Inadequate lubrication

- Roller end scoring — Metal-to-metal contact from breakdown of lubricant film.
- Cone large rib face scoring — “Welding” and heat damage from metal-to-metal contact.

Total bearing lock-up

- Rollers skew, slide sideways and lock-up bearing.

Roller end scoring

- Total bearing lock-up — Rollers skew, slide sideways and lock-up bearing.

Excessive end play

- Excessive preload can cause damage similar to inadequate lubrication damage.

Fatigue spalling

- Inclusion origin — Spalling from oxides or other hard inclusions in bearing steel.
- Geometric stress concentration — Spalling from misalignment, deflections or heavy loading.
- Point surface origin — Spalling from debris or raised metal exceeding the lubricant film thickness.